Question Number	Answer	Mark
1(a)	Use of $\Phi=B A$ Converts cm to m Or mT to T $\begin{equation*} \Phi=1.1 \times 10^{-4} \mathrm{~Wb} \tag{1} \end{equation*}$ Example of calculation $\begin{align*} & \Phi=6.0 \times 10^{-2} \mathrm{~m} \times 2.4 \times 10^{-2} \mathrm{~m} \times 74 \times 10^{-3} \mathrm{~T} \\ & \Phi=1.07 \times 10^{-4} \mathrm{~Wb} \tag{1} \end{align*}$	3
1(b)	Use of $\varepsilon=\Delta \Phi / \Delta t$ Use of time = distance/speed $\varepsilon=5.3 \mathrm{mV}$ (5.0 mV or 5.5 mV depending on value of Φ used, ecf value of Φ from (a)) Or Quotes $\mathcal{E}=B l v$ $l=6.0 \times 10^{-2} \mathrm{~m}$ used $\varepsilon=5.3 \mathrm{mV}$ Example of calculation $\begin{aligned} & \text { Time }=0.024 \mathrm{~m} / 1.2 \mathrm{~m} \mathrm{~s}^{-1} \\ & t=0.020 \mathrm{~s} \\ & \varepsilon=1.1 \times 10^{-4} \mathrm{~Wb} / 0.02 \mathrm{~s} \\ & =5.5 \mathrm{mV} \end{aligned}$	3
1(c)	Use of $I=V / R$ Use of $F=B I l$ $F=9.8 \times 10^{-5} \mathrm{~N}$ (ecf value of ε from (b)) This force is too small to be felt. (this comment must be consistent with their value of force) Example of calculation $\begin{aligned} & I=5.5 \mathrm{mV} / / 0.25 \Omega=0.022 \mathrm{~A} \\ & F=74 \times 10^{-3} \mathrm{~T} \times 0.022 \mathrm{~A} \times 0.060 \mathrm{~m} \\ & F=9.8 \times 10^{-5} \mathrm{~N} \end{aligned}$	4
	Total for question	10

Question Number	Answer		Mark
2(a)	Use of $\mathrm{N} \Phi=\mathrm{NBA}$ $\Phi=1.2 \times 10^{-3} \mathrm{~Wb} \text { (accept } \mathrm{Tm}^{2} \text {) }$ Example of calculation $\begin{aligned} & \Phi=200 \times 3.0 \times 10^{-2} \mathrm{~T} \times 2.0 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1} \\ & \Phi=1.2 \times 10^{-3} \mathrm{~Wb} \end{aligned}$	(1) (1)	2
2(b)(i)	$\begin{aligned} & \text { Time }=0.125(\mathrm{~s}) \text { Or Time }=1 / 8(\mathrm{~s}) \\ & \text { Use of } \varepsilon=(-) \mathrm{d}(\mathrm{~N} \Phi) / \mathrm{d} t \\ & \varepsilon=(-) 9.6 \times 10^{-3} \mathrm{~V} \text { (ecf } \mathrm{N} \Phi \text { from (a)) } \end{aligned}$ Example of calculation $\begin{aligned} & \varepsilon=1.2 \times 10^{-3} \mathrm{~Wb} / 0.125 \mathrm{~s} \\ & \varepsilon=9.6 \mathrm{mV} \end{aligned}$	(1) (1) (1)	3
2(b)(ii)	Maximum values when coil is horizontal Or maximum values when the coil is parallel to the magnetic field Or minimum value when coil vertical Or minimum value when the coil is perpendicular to the magnetic field e.m.f. determined by rate of change of flux $\mathbf{O r}$ see $\varepsilon=(-) \mathrm{d}(\mathrm{N} \Phi) / \mathrm{d} t$ Greatest rate of change of flux as coil goes through horizontal Or greatest rate of change of flux occurs when $\theta=90^{\circ}$ Or least rate of change of flux as it goes through vertical Or least rate of change of flux occurs when $\theta=0^{\circ}$	(1) (1) (1)	3
2(b)(iii)	Peaks would be smaller amplitude Or maximum e.m.f. smaller Rate of change of flux (linkage/cutting) less	(1) (1)	2
2(c)(i)	Energy required to turn generator Transferred from kinetic energy of the car	(1) (1)	2
2(c)(ii)	Greater rate of kinetic energy transfer/loss at high(er) speeds At slower/low speeds there is less/negligible braking effect (so car would not fully stop)		2
	Total for question		14

Question Number	Answer		Mark
3(a)	(Magnetic) force acts at right angles to ion motion/current Force is the centripetal force or causing centripetal acceleration or direction of acceleration/force is to centre (of circle)	(1) (1)	2
3(b)	$\begin{aligned} & \text { See } F=B Q v \text { or } r=p / B Q \\ & F=m v^{2} / r \text { or } p=m v \\ & f=v / 2 \pi r \text { or } f=\omega / 2 \pi \text { or } T=2 \pi r / v \text { or } T=2 \pi / \omega \end{aligned}$	(1) (1) (1)	3
3(c)(i)	Identifies positive (field) above and below (the ion) which repels the ion	$\begin{aligned} & \hline(1) \\ & (1) \end{aligned}$	2
3(c)(ii)	$\begin{aligned} & 3 \times 32.0645 / 10 \times\left(10^{6}\right) \\ & =0.0000096(\mathrm{u}) \end{aligned}$	(1) (1)	2
3(c)(iii)	Convert MeV to J Convert J to kg Convert kg to u Mass loss $=0.0024(u)($ and this is more than $0.00001 u)$ Example of calculation mass loss $=2.2 \mathrm{MeV} \times 1.6 \times 10^{-13} \mathrm{~J}$ J to kg $3.52 \times 10^{-13} / 9 \times 10^{16} \mathrm{~kg}$ kg to u $3.91 \times 10^{-30} / 1.66 \times 10^{-27} \mathrm{u}$	(1) (1) (1) (1)	4
	Total for question		13

