Question	Answer		Mark
Number			
1(a)	Use of $\Phi = BA$	(1)	
	Converts cm to m Or mT to T	(1)	
	$\Phi = 1.1 imes 10^{-4} \mathrm{Wb}$	(1)	3
	Example of calculation		
	$\Phi = 6.0 \times 10^{-2} \text{ m} \times 2.4 \times 10^{-2} \text{ m} \times 74 \times 10^{-3} \text{ T}$		
	$\boldsymbol{\Phi} = 1.07 \times 10^{-4} \mathrm{Wb}$		
1(b)	Use of $\mathcal{E} = \Lambda \Phi / \Lambda t$	(1)	
	Use of time – distance/speed	(1)	
		(1)	3
	$\mathcal{E} = 5.3 \text{ mV}$ (5.0 mV or 5.5 mV depending on value of Φ used, ect value		
	of φ from (a))		
	Or	(1)	
	Quotes $\mathcal{E} = Blv$	(1)	
	$l = 6.0 \times 10^{-2} \text{m used}$	(1)	
	$\mathcal{E} = 5.3 \text{ mV}$		
	0 – 5.5 m v		
	Example of calculation		
	$Time = 0.024 \text{ m}/1.2 \text{ m}\text{ s}^{-1}$		
	t = 0.020 s		
	$C = 1.1 \times 10^{-4} \text{ WH} / 0.02 \text{ s}$		
	$C = 1.1 \times 10$ WD/ 0.02 S		
	= 5.5 mV		
1(-)		(1)	
1(c)	Use of $I = V/R$	(1)	
	OSC OI T - DII	(1)	
	$F = 9.8 \times 10^{-5}$ N (ecf value of \mathcal{E} from (b))	(1)	4
	This force is too small to be felt. (this comment must be consistent with	(1)	-
	their value of force)		
	Example of calculation $L = 5.5 \text{ mV}/(0.25 \text{ O} = 0.022 \text{ A})$		
	$I = 5.5 \text{ mV} / (0.25 \Omega = 0.022 \text{ A})$		
	$F = (4 \times 10^{-1} \text{ I} \times 0.022 \text{ A} \times 0.060 \text{ m})$ $F = 0.8 \times 10^{-5} \text{ N}$		
	$F = 9.8 \times 10^{-1} \text{N}$		
	Total for question		10
			10

Question	Answer		Mark
Number		(4)	
2(a)	Use of $N\varphi = NBA$	(1)	
	$\varphi = 1.2 \times 10^{-5} \text{ Wb (accept T m2)}$	(1)	2
	<u>Example of calculation</u> $\underline{\Phi} = 200 \times 2.0 \times 10^{-2} \text{ Tr} \cdot 2.0 \times 10^{-4} \text{ ms}^{-1}$		
	$\Psi = 200 \times 3.0 \times 10$ I × 2.0 × 10 m s		
	$\varphi = 1.2 \times 10$ Wb		
2(b)(i)	Time = 0.125 (s) Or Time = $1/8$ (s)	(1)	
	Use of $\varepsilon = (-)d(N\Phi)/dt$	(1)	
	$\epsilon = (-9.6 \times 10^{-3} \text{ V} (\text{ecf } \text{N}\Phi \text{ from (a)})$	(1)	3
	Example of calculation		
	$\epsilon = 1.2 \times 10^{-5} \text{ Wb} / 0.125 \text{ s}$		
	$\epsilon = 9.6 \text{ mV}$		
2(b)(ii)	Maximum values when coil is horizontal		
	Or maximum values when the coil is parallel to the magnetic field		
	Or minimum value when coil vertical		
	Or minimum value when the coil is perpendicular to the magnetic	(1)	
	field		
		(1)	
	e.m.f. determined by rate of change of flux Or see $\varepsilon = (-)d(N\Psi)/dt$		
	Greatest rate of change of flux as coil goes through horizontal		
	Or greatest rate of change of flux occurs when $A-90^{\circ}$		
	Or least rate of change of flux as it goes through vertical	(1)	3
	Or least rate of change of flux occurs when $\theta=0^{\circ}$	(1)	
2(b)(iii)	Peaks would be smaller amplitude Or maximum e.m.f. smaller	(1)	
	Rate of change of flux (linkage/cutting) less	(1)	2
2(c)(i)	Energy required to turn generator	(1)	
	Transferred from kinetic energy of the car	(1)	2
2(c)(ii)	Greater rate of kinetic energy transfer/loss at high(er) speeds	(1)	
	At slower/low speeds there is less/negligible braking effect (so car		
	would not fully stop)	(1)	2
	Total for question		1/
			1.4

Question Number	Answer	Mark
3 (a)	(Magnetic) force acts at right angles to ion motion/current (1)	
	Force is the centripetal force or causing centripetal acceleration or direction of acceleration/force is to contro (of circle)	2
	direction of acceleration/force is to centre (of circle) (1)	2
3 (b)	See $F = BQv$ or $r = p/BQ$ (1)	
	$F = mv^2/r \text{ or } p = mv \tag{1}$	
	$f = v/2\pi r \text{ or } f = \omega/2\pi \text{ or } T = 2\pi r/v \text{ or } T = 2\pi/\omega $ (1)	3
3 (c)(i)	Identifies positive (field) above and below (the ion) (1)	
	which repels the ion (1)	2
3(c)(ii)	$3 \times 32.0645 / 10 \text{ x} (10^6)$ (1)	
	$= 0.000096(u) \tag{1}$	2
3(c)(iii)	Convert MeV to J (1)	
	Convert J to kg (1)	
	Convert kg to u (1)	_
	Mass loss = $0.0024(u)$ (and this is more than $0.00001u$) (1)	4
	Example of calculation	
	$mass loss = 2.2 \text{ MeV x} 1.6 \text{ x} 10^{-13} \text{ J}$	
	J to kg $3.52 \times 10^{-13} / 9 \times 10^{16}$ kg	
	kg to u $3.91 \times 10^{-30} / 1.66 \times 10^{-27} u$	
	Total for question	13